Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Chromatin – the functional form of DNA in the cell – exists in the form of a polymer immersed in a nucleoplasmic fluid inside the cell nucleus. Both chromatin and nucleoplasm are subject to active forces resulting from local biological processes. This activity leads to non-equilibrium phenomena, affecting chromatin organization and dynamics, yet the underlying physics is far from understood. Here, we expand upon a previously developed two-fluid model of chromatin and nucleoplasm by considering three types of activity in the form of force dipoles – two with both forces of the dipole acting on the same fluid (either polymer or nucleoplasm) and a third, with two forces pushing chromatin and solvent in opposite directions. We find that this latter type results in the most significant flows, dominating over most length scales of interest. Due to the friction between the fluids and their viscosity, we observe emergent screening length scales in the active flows of this system. We predict that the presence of different activity types and their relative strengths can be inferred from observing the power spectra of hydrodynamic fluctuations in the chromatin and the nucleoplasm.more » « less
-
null (Ed.)Cell differentiation, the process by which stem cells become specialized cells, is associated with chromatin reorganization inside the cell nucleus. Here, we measure the chromatin distribution and dynamics in embryonic stem cells in vivo before and after differentiation. We find that undifferentiated chromatin is less compact, more homogeneous, and more dynamic than differentiated chromatin. Furthermore, we present a noninvasive rheological analysis using intrinsic chromatin dynamics, which reveals that undifferentiated chromatin behaves like a Maxwell fluid, while differentiated chromatin shows a coexistence of fluidlike (sol) and solidlike (gel) phases. Our data suggest that chromatin undergoes a local sol-gel transition upon cell differentiation, corresponding to the formation of the more dense and transcriptionally inactive heterochromatin.more » « less
An official website of the United States government
